Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474129

RESUMO

Li3V2(PO4)3 cathodes for Li-ion batteries (LIBs) were synthesized using a hydrothermal method with the subsequent annealing in an argon atmosphere to achieve optimal properties. The X-ray diffraction analysis confirmed the material's single-phase nature, while the scanning electron microscopy revealed a granular structure, indicating a uniform particle size distribution, beneficial for electrochemical performance. Magnetometry and electron spin resonance studies were conducted to investigate the magnetic properties, confirming the presence of the relatively low concentration and highly uniform distribution of tetravalent vanadium ions (V4+), which indicated low lithium deficiency values in the original structure and a high degree of magnetic homogeneity in the sample, an essential factor for consistent electrochemical behavior. For this pure phase Li3V2(PO4)3 sample, devoid of any impurities such as carbon or salts, extensive electrochemical property testing was performed. These tests resulted in the experimental discovery of a remarkably high lithium diffusion coefficient D = 1.07 × 10-10 cm2/s, indicating excellent ionic conductivity, and demonstrated impressive stability of the material with sustained performance over 1000 charge-discharge cycles. Additionally, relithiated Li3V2(PO4)3 (after multiple electrochemical cycling) samples were investigated using scanning electron microscopy, magnetometry and electron spin resonance methods to determine the extent of degradation. The combination of high lithium diffusion coefficients, a low degradation rate and remarkable cycling stability positions this Li3V2(PO4)3 material as a promising candidate for advanced energy storage applications.


Assuntos
Lítio , Argônio , Condutividade Elétrica , Eletrodos , Íons
2.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499092

RESUMO

This article shows the success of using the chemical reduction method, the polyol thermolytic process, the sonochemistry method, and the hybrid sonochemistry/polyol process method to design iron-based magnetically active composite nanomaterials in a hyperbranched polyester polyol matrix. Four samples were obtained and characterized by transmission and scanning electron microscopy, infrared spectroscopy and thermogravimetry. In all cases, the hyperbranched polymer is an excellent stabilizer of the iron and iron oxides nanophase. In addition, during the thermolytic process and hybrid method, the branched polyol exhibits the properties of a good reducing agent. The use of various approaches to the synthesis of iron nanoparticles in a branched polyester polyol matrix makes it possible to control the composition, geometry, dispersity, and size of the iron-based nanophase and to create new promising materials with colloidal stability, low hemolytic activity, and good magnetic properties. The NMR relaxation method proved the possibility of using the obtained composites as tomographic probes.


Assuntos
Ferro , Poliésteres , Poliésteres/química , Ferro/química , Magnetismo , Polímeros/química , Fenômenos Magnéticos
3.
Materials (Basel) ; 16(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36614383

RESUMO

This work is devoted to the study of thermometric performances of Nd3+ (0.1 or 0.5 mol.%), Yb3+ (X%):YF3 nanoparticles. Temperature sensitivity of spectral shape is related to the phonon-assisted nature of energy transfer (PAET) between Nd3+ and Yb3+). However, in the case of single-doped Nd3+ (0.1 or 0.5 mol.%):YF3 nanoparticles, luminescence decay time (LDT) of 4F3/2 level of Nd3+ in Nd3+ (0.5 mol.%):YF3 decreases with the temperature decrease. In turn, luminescence decay time in Nd3+ (0.1 mol.%):YF3 sample remains constant. It was proposed, that at 0.5 mol.% the cross-relaxation (CR) between Nd3+ ions takes place in contradistinction from 0.1 mol.% Nd3+ concentration. The decrease of LDT with temperature is explained by the decrease of distances between Nd3+ with temperature that leads to the increase of cross-relaxation efficiency. It was suggested, that the presence of both CR and PAET processes in the studied system (Nd3+ (0.5 mol.%), Yb3+ (X%):YF3) nanoparticles provides higher temperature sensitivity compared to the systems having one process (Nd3+ (0.1 mol.%), Yb3+ (X%):YF3). The experimental results confirmed this suggestion. The maximum relative temperature sensitivity was 0.9%·K-1 at 80 K.

4.
New Phytol ; 231(2): 763-776, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33507570

RESUMO

The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.


Assuntos
Micorrizas , Ecossistema , Fungos , Concentração de Íons de Hidrogênio , Filogenia , Solo , Microbiologia do Solo , Temperatura
5.
Magn Reson Chem ; 58(10): 949-956, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32530544

RESUMO

Two types of Fe(III) polynuclear iron(III) 1D-chain coordination compounds of the general formula [Fe (L)(tvp)]BPh4 nSolv, where L = dianion of N,N'-ethylenebis (benzoylacetylacetone)2,2'-imine (bzacen), tvp = 1,2-di(4-pyridyl)ethylene were synthesized and studied by the electron paramagnetic resonance (EPR) and magnetic susceptibility methods in the temperature range (100-300) К. Two types of spin-variable complexes are formed depending on the time of precipitation of the complexes from the same solution leading to differently solvated species. They have different characteristics of the local ligand field and the spin transition behavior. The thermodynamic parameters of spin transitions were determined from the temperature dependence of the EPR signals integral intensity. The energy levels splitting values obtained by analyzing g-factors of low-spin Fe(III) centers evidenced not only on the crucial role of low-symmetry distortions on the principal possibility of spin-crossover processes, but also on the temperature peculiarities of spin transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...